number of dimension - translation to ρωσικά
DICLIB.COM
AI-based language tools
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:     

Μετάφραση και ανάλυση λέξεων από τεχνητή νοημοσύνη

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

number of dimension - translation to ρωσικά

WAY OF DETERMINING THE DIMENSION OF A FRACTAL SET
Upper box dimension; Lower box dimension; Entropy dimension; Entropy number; Minkowski dimension; Box counting dimension; Box-counting dimension; Bouligand dimension; Kolmogorov capacity; Kolmogorov dimension; Upper Minkowski dimension; Lower Minkowski dimension; Box dimension; Minkowski-Bouligand dimension; Minkowski cover

number of dimension      
размерность
Kolmogorov capacity         

математика

емкость по Колмогорову

entropy number         

математика

энтропийное число

Ορισμός

Размерность
I Разме́рность (число измерений)

геометрической фигуры, число, равное единице, если фигура есть линия; равное двум, если фигура есть поверхность; равное трём, если фигура представляет собой тело. С точки зрения аналитической геометрии Р. фигуры равна числу координат, нужных для определения положения лежащей на этой фигуре точки; например, положение точки на кривой определяется одной координатой, на поверхности - двумя координатами, в трёхмерном пространстве - тремя координатами. Геометрия до середины 19 в. занималась только фигурами первых трёх Р. С развитием в середине 19 в. понятия о многомерном пространстве (См. Многомерное пространство) геометрия начинает заниматься фигурами любой Р. Простейшими фигурами размерности m являются m-мерные многообразия (См. Многообразие); m-мерное многообразие, расположенное в n-меpном пространстве, задаётся при помощи n - m уравнений (например, линия, т. е. одномерное многообразие, в трёхмерном пространстве задаётся 3 - 1 = 2 уравнениями). Положение точки на m-мерном многообразии определяется "криволинейными" координатами (например, положение точки на сфере определяется её "географическими координатами" - долготой и широтой; аналогично на торе). Приведённые выше положения справедливы лишь при некоторых ограничительных предположениях. Действительно общее определение Р. любого замкнутого ограниченного множества, лежащего в n-mepном евклидовом пространстве, было дано П. С. Урысоном: оказывается, для того чтобы такое множество имело размерность ≤ m, необходимо и достаточно, чтобы оно при любом ε > 0 допускало ε-Покрытие (замкнутыми множествами, имеющими кратность ≤ n + 1). Приведённое выше общее определение Р. допускает естественное обобщение на очень широкие классы топологических пространств (См. Топологическое пространство). Урысон построил в 1921 теорию Р. - одну из глубоких теорий современной топологии. Своим дальнейшим развитием теория Р. обязана главным образом советским математикам (П. С. Александров, Л. С. Понтрягин и др.).

Лит.: Александров П. С., Пасынков Б. А., Введение в теорию размерности, М., 1973.

II Разме́рность

физической величины, выражение, показывающее, во сколько раз изменится единица физической величины при изменении единиц величин, принятых в данной системе за основные. Р. представляет собой одночлен, составленный из произведения обобщённых символов основных единиц в различных (целых или дробных, положительных или отрицательных) степенях, которые называются показателями Р. Так, например, Р. скорости LT-1, где Т представляет собой Р. времени, а L - Р. длины. Эти символы обозначают единицы времени и длины независимо от их конкретного размера (секунда, минута, час, метр, сантиметр и т.д.). В ряде случаев Р. позволяет устанавливать связи между соответствующими величинами (подробнее см. Размерностей анализ).

Βικιπαίδεια

Minkowski–Bouligand dimension

In fractal geometry, the Minkowski–Bouligand dimension, also known as Minkowski dimension or box-counting dimension, is a way of determining the fractal dimension of a set S {\displaystyle S} in a Euclidean space R n {\displaystyle \mathbb {R} ^{n}} , or more generally in a metric space ( X , d ) {\displaystyle (X,d)} . It is named after the Polish mathematician Hermann Minkowski and the French mathematician Georges Bouligand.

To calculate this dimension for a fractal S {\displaystyle S} , imagine this fractal lying on an evenly spaced grid and count how many boxes are required to cover the set. The box-counting dimension is calculated by seeing how this number changes as we make the grid finer by applying a box-counting algorithm.

Suppose that N ( ε ) {\displaystyle N(\varepsilon )} is the number of boxes of side length ε {\displaystyle \varepsilon } required to cover the set. Then the box-counting dimension is defined as

dim box ( S ) := lim ε 0 log N ( ε ) log ( 1 / ε ) . {\displaystyle \dim _{\text{box}}(S):=\lim _{\varepsilon \to 0}{\frac {\log N(\varepsilon )}{\log(1/\varepsilon )}}.}

Roughly speaking, this means that the dimension is the exponent d {\displaystyle d} such that N ( 1 / n ) C n d {\displaystyle N(1/n)\approx Cn^{d}} , which is what one would expect in the trivial case where S {\displaystyle S} is a smooth space (a manifold) of integer dimension d {\displaystyle d} .

If the above limit does not exist, one may still take the limit superior and limit inferior, which respectively define the upper box dimension and lower box dimension. The upper box dimension is sometimes called the entropy dimension, Kolmogorov dimension, Kolmogorov capacity, limit capacity or upper Minkowski dimension, while the lower box dimension is also called the lower Minkowski dimension.

The upper and lower box dimensions are strongly related to the more popular Hausdorff dimension. Only in very special applications is it important to distinguish between the three (see below). Yet another measure of fractal dimension is the correlation dimension.

Μετάφραση του &#39number of dimension&#39 σε Ρωσικά